ink_storage/lazy/vec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
// Copyright (C) Use Ink (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A simple storage vector implementation built on top of [Mapping].
//!
//! # Note
//!
//! This vector doesn't actually "own" any data.
//! Instead it is just a simple wrapper around the contract storage facilities.
use core::cell::Cell;
use ink_primitives::Key;
use ink_storage_traits::{
AutoKey,
Packed,
Storable,
StorableHint,
StorageKey,
};
use scale::EncodeLike;
use crate::{
Lazy,
Mapping,
};
/// A vector of values (elements) directly on contract storage.
///
/// # Important
///
/// [StorageVec] requires its own pre-defined storage key where to store values. By
/// default, the is automatically calculated using [`AutoKey`](crate::traits::AutoKey)
/// during compilation. However, anyone can specify a storage key using
/// [`ManualKey`](crate::traits::ManualKey). Specifying the storage key can be helpful for
/// upgradeable contracts or you want to be resistant to future changes of storage key
/// calculation strategy.
///
/// # Differences between `ink::prelude::vec::Vec` and [StorageVec]
///
/// Any `Vec<T>` will exhibit [Packed] storage layout; where
/// [StorageVec] stores each value under it's own storage key.
///
/// Hence, any read or write from or to a `Vec` on storage will load
/// or store _all_ of its elements.
///
/// This can be undesirable:
/// The cost of reading or writing a _single_ element grows linearly
/// corresponding to the number of elements in the vector (its length).
/// Additionally, the maximum capacity of the _whole_ vector is limited by
/// the size of the static buffer used during ABI encoding and decoding
/// (default 16 KiB).
///
/// [StorageVec] on the other hand allows to access each element individually.
/// Thus, it can theoretically grow to infinite size.
/// However, we currently limit the length at 2 ^ 32 elements. In practice,
/// even if the vector elements are single bytes, it'll allow to store
/// more than 4 GB data in blockchain storage.
///
/// # Caveats
///
/// Iterators are not provided. [StorageVec] is expected to be used to
/// store a lot elements, where iterating through the elements would be
/// rather inefficient (naturally, it is still possible to manually
/// iterate over the elements using a loop).
///
/// For the same reason, operations which would require re-ordering
/// stored elements are not supported. Examples include inserting and
/// deleting elements at arbitrary positions or sorting elements.
///
/// The decision whether to use `Vec<T>` or [StorageVec] can be seen as an
/// optimization problem with several factors:
/// * How large you expect the vector to grow
/// * The size of individual elements being stored
/// * How frequently reads, writes and iterations happen
///
/// For example, if a vector is expected to stay small but is frequently
/// iterated over. Choosing a `Vec<T>` instead of [StorageVec] will be
/// preferred as individual storage reads are much more expensive as
/// opposed to retrieving and decoding the whole collection with a single
/// storage read.
///
/// # Storage Layout
///
/// At given [StorageKey] `K`, the length of the [StorageVec] is hold.
/// Each element `E` is then stored under a combination of the [StorageVec]
/// key `K` and the elements index.
///
/// Given [StorageVec] under key `K`, the storage key `E` of the `N`th
/// element is calculated as follows:
///
/// `E = scale::Encode((K, N))`
#[cfg_attr(feature = "std", derive(scale_info::TypeInfo))]
pub struct StorageVec<V: Packed, KeyType: StorageKey = AutoKey> {
/// The number of elements stored on-chain.
///
/// # Note
///
/// Because of caching, never operate on this field directly!
/// Always use `fn get_len()` an `fn set_len()` instead.
len: Lazy<u32, KeyType>,
/// The length only changes upon pushing to or popping from the vec.
/// Hence we can cache it to prevent unnecessary reads from storage.
///
/// # Note
///
/// Because of caching, never operate on this field directly!
/// Always use `fn get_len()` an `fn set_len()` instead.
#[cfg_attr(feature = "std", codec(skip))]
len_cached: CachedLen,
/// We use a [Mapping] to store all elements of the vector.
/// Each element is living in storage under `&(KeyType::KEY, index)`.
/// Because [StorageVec] has a [StorageKey] parameter under which the
/// length and element are stored, it won't collide with the other
/// storage fields (unless contract authors purposefully craft such a
/// storage layout).
elements: Mapping<u32, V, KeyType>,
}
#[derive(Debug)]
struct CachedLen(Cell<Option<u32>>);
impl<V, KeyType> Default for StorageVec<V, KeyType>
where
V: Packed,
KeyType: StorageKey,
{
fn default() -> Self {
Self::new()
}
}
impl<V, KeyType> Storable for StorageVec<V, KeyType>
where
V: Packed,
KeyType: StorageKey,
{
#[inline]
fn encode<T: scale::Output + ?Sized>(&self, _dest: &mut T) {}
#[inline]
fn decode<I: scale::Input>(_input: &mut I) -> Result<Self, scale::Error> {
Ok(Default::default())
}
#[inline]
fn encoded_size(&self) -> usize {
0
}
}
impl<V, Key, InnerKey> StorableHint<Key> for StorageVec<V, InnerKey>
where
V: Packed,
Key: StorageKey,
InnerKey: StorageKey,
{
type Type = StorageVec<V, Key>;
type PreferredKey = InnerKey;
}
impl<V, KeyType> StorageKey for StorageVec<V, KeyType>
where
V: Packed,
KeyType: StorageKey,
{
const KEY: Key = KeyType::KEY;
}
#[cfg(feature = "std")]
const _: () = {
use crate::traits::StorageLayout;
use ink_metadata::layout::{
Layout,
LayoutKey,
RootLayout,
};
impl<V, KeyType> StorageLayout for StorageVec<V, KeyType>
where
V: Packed + StorageLayout + scale_info::TypeInfo + 'static,
KeyType: StorageKey + scale_info::TypeInfo + 'static,
{
fn layout(_: &Key) -> Layout {
Layout::Root(RootLayout::new(
LayoutKey::from(&KeyType::KEY),
<V as StorageLayout>::layout(&KeyType::KEY),
scale_info::meta_type::<Self>(),
))
}
}
};
impl<V, KeyType> StorageVec<V, KeyType>
where
V: Packed,
KeyType: StorageKey,
{
/// Creates a new empty `StorageVec`.
pub const fn new() -> Self {
Self {
len: Lazy::new(),
len_cached: CachedLen(Cell::new(None)),
elements: Mapping::new(),
}
}
/// Returns the number of elements in the vector, also referred to as its length.
///
/// The length is cached; subsequent calls (without writing to the vector) won't
/// trigger additional storage reads.
#[inline]
pub fn len(&self) -> u32 {
let cached_len = self.len_cached.0.get();
debug_assert!(cached_len.is_none() || self.len.get() == cached_len);
cached_len.unwrap_or_else(|| {
let value = self.len.get();
self.len_cached.0.set(value);
value.unwrap_or(u32::MIN)
})
}
/// Overwrite the length. Writes directly to contract storage.
fn set_len(&mut self, new_len: u32) {
self.len.set(&new_len);
self.len_cached.0.set(Some(new_len));
}
/// Returns `true` if the vector contains no elements.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Appends an element to the back of the vector.
///
/// # Panics
///
/// * If the vector is at capacity (max. of 2 ^ 32 elements).
/// * If the value overgrows the static buffer size.
/// * If there was already a value at the current index.
pub fn push<T>(&mut self, value: &T)
where
T: Storable + scale::EncodeLike<V>,
{
let slot = self.len();
self.set_len(slot.checked_add(1).unwrap());
assert!(self.elements.insert(slot, value).is_none());
}
/// Try to append an element to the back of the vector.
///
/// Returns:
///
/// * `Ok(())` if the value was inserted successfully
/// * `Err(_)` if the encoded value exceeds the static buffer size.
pub fn try_push<T>(&mut self, value: &T) -> Result<(), ink_env::Error>
where
T: Storable + scale::EncodeLike<V>,
{
let slot = self.len();
self.set_len(slot.checked_add(1).unwrap());
assert!(self.elements.try_insert(slot, value)?.is_none());
Ok(())
}
/// Clears the last element from the storage and returns it.
/// Shrinks the length of the vector by one.
//
/// Returns `None` if the vector is empty or if the last
/// element was already cleared from storage.
///
/// # Panics
///
/// * If the value overgrows the static buffer size.
pub fn pop(&mut self) -> Option<V> {
if self.is_empty() {
return None;
}
let slot = self.len().checked_sub(1).unwrap();
self.set_len(slot);
self.elements.take(slot)
}
/// Try to clear and return the last element from storage.
/// Shrinks the length of the vector by one.
//
/// Returns `None` if the vector is empty.
///
/// Returns
///
/// `Some(Ok(_))` containing the value if it existed and was decoded successfully.
/// `Some(Err(_))` if the value existed but its length exceeds the static buffer size.
/// `None` if the vector is empty.
pub fn try_pop(&mut self) -> Option<Result<V, ink_env::Error>> {
if self.is_empty() {
return None;
}
let slot = self.len().checked_sub(1).unwrap();
self.set_len(slot);
self.elements.try_take(slot)
}
/// Get a copy of the last element without removing it from storage.
///
/// # Panics
///
/// * If the value overgrows the static buffer size.
pub fn peek(&self) -> Option<V> {
if self.is_empty() {
return None;
}
let slot = self.len().checked_sub(1).unwrap();
self.elements.get(slot)
}
/// Try to get a copy of the last element without removing it from storage.
///
/// Returns:
///
/// `Some(Ok(_))` containing the value if it existed and was decoded successfully.
/// `Some(Err(_))` if the value existed but its length exceeds the static buffer size.
/// `None` if the vector is empty.
pub fn try_peek(&self) -> Option<Result<V, ink_env::Error>> {
if self.is_empty() {
return None;
}
let slot = self.len().checked_sub(1).unwrap();
self.elements.try_get(slot)
}
/// Access an element at given `index`.
///
/// Returns `None` if there was no value at the `index`.
///
/// # Panics
///
/// * If encoding the element exceeds the static buffer size.
pub fn get(&self, index: u32) -> Option<V> {
self.elements.get(index)
}
/// Try to access an element at given `index`.
///
/// Returns:
///
/// * `Some(Ok(_))` containing the value if it existed and was decoded successfully.
/// * `Some(Err(_))` if the value existed but its length exceeds the static buffer
/// size.
/// * `None` if there was no value at `index`.
pub fn try_get(&self, index: u32) -> Option<ink_env::Result<V>> {
self.elements.try_get(index)
}
/// Set the `value` at given `index`.
///
/// # Panics
///
/// * If the index is out of bounds.
/// * If decoding the element exceeds the static buffer size.
pub fn set<T>(&mut self, index: u32, value: &T) -> Option<u32>
where
T: Storable + EncodeLike<V>,
{
assert!(index < self.len());
self.elements.insert(index, value)
}
/// Try to set the `value` at given `index`.
///
/// Returns:
///
/// * `Ok(Some(_))` if the value was inserted successfully, containing the size in
/// bytes of the pre-existing value at the specified key if any.
/// * `Ok(None)` if the insert was successful but there was no pre-existing value.
/// * Err([`ink_env::Error::BufferTooSmall`]) if the encoded value exceeds the static
/// buffer size
/// * Err([`ink_env::Error::ReturnError`]\([`ink_env::ReturnErrorCode::KeyNotFound`]))
/// if the `index` is out of bounds.
///
/// # Panics
///
/// Panics if `index` exceeds the length of the vector.
pub fn try_set<T>(
&mut self,
index: u32,
value: &T,
) -> Result<Option<u32>, ink_env::Error>
where
T: Storable + EncodeLike<V>,
{
if index >= self.len() {
return Err(ink_env::ReturnErrorCode::KeyNotFound.into());
}
self.elements.try_insert(index, value)
}
/// Delete all elements from storage.
///
/// # Warning
///
/// This iterates through all elements in the vector; complexity is O(n).
/// It might not be possible to clear large vectors within a single block!
pub fn clear(&mut self) {
for i in 0..self.len() {
self.elements.remove(i);
}
self.set_len(0);
}
/// Clears the value of the element at `index`. It doesn't change the length of the
/// vector.
///
/// # Panics
///
/// Panics if `index` exceeds the length of the vector.
pub fn clear_at(&mut self, index: u32) {
assert!(index < self.len());
self.elements.remove(index);
}
}
impl<V, KeyType> FromIterator<V> for StorageVec<V, KeyType>
where
V: Packed + EncodeLike<V>,
KeyType: StorageKey,
{
fn from_iter<T: IntoIterator<Item = V>>(iter: T) -> Self {
let mut result = StorageVec::<V, KeyType>::new();
for element in iter {
result.push(&element);
}
result
}
}
impl<V, KeyType> ::core::fmt::Debug for StorageVec<V, KeyType>
where
V: Packed,
KeyType: StorageKey,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("StorageVec")
.field("key", &KeyType::KEY)
.field("len", &self.len)
.field("len_cached", &self.len_cached)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::traits::ManualKey;
#[test]
fn empty_vec_works_as_expected() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<String> = StorageVec::new();
assert_eq!(array.pop(), None);
assert_eq!(array.peek(), None);
assert_eq!(array.len(), 0);
assert!(array.is_empty());
Ok(())
})
.unwrap()
}
#[test]
fn push_and_pop_work() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<String> = StorageVec::new();
let value = "test".to_string();
array.push(&value);
assert_eq!(array.len(), 1);
assert_eq!(array.pop(), Some(value));
Ok(())
})
.unwrap()
}
#[test]
fn storage_keys_are_correct() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
const BASE: u32 = 123;
let mut array: StorageVec<u8, ManualKey<BASE>> = StorageVec::new();
let expected_value = 127;
array.push(&expected_value);
let actual_length = ink_env::get_contract_storage::<_, u32>(&BASE);
assert_eq!(actual_length, Ok(Some(1)));
let actual_value = ink_env::get_contract_storage::<_, u8>(&(BASE, 0u32));
assert_eq!(actual_value, Ok(Some(expected_value)));
Ok(())
})
.unwrap()
}
#[test]
fn push_and_pop_work_for_two_vecs_with_same_manual_key() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let expected_value = 255;
let mut array: StorageVec<u8, ManualKey<{ u32::MIN }>> = StorageVec::new();
array.push(&expected_value);
let mut array2: StorageVec<u8, ManualKey<{ u32::MIN }>> = StorageVec::new();
assert_eq!(array2.pop(), Some(expected_value));
Ok(())
})
.unwrap()
}
#[test]
fn set_and_get_work() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<String> = StorageVec::new();
let value = "test".to_string();
array.push(&value);
assert_eq!(array.get(0), Some(value));
assert_eq!(array.len(), 1);
let replaced_value = "foo".to_string();
array.set(0, &replaced_value);
assert_eq!(array.get(0), Some(replaced_value));
Ok(())
})
.unwrap()
}
#[test]
#[should_panic]
fn set_panics_on_oob() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
StorageVec::<u8>::new().set(0, &0);
Ok(())
})
.unwrap()
}
#[test]
fn clear_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<u128> = (0..1024).collect();
array.clear();
assert_eq!(array.len(), 0);
assert_eq!(array.pop(), None);
Ok(())
})
.unwrap()
}
#[test]
fn clear_on_empty_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<bool> = StorageVec::new();
array.clear();
assert_eq!(array.len(), 0);
assert_eq!(array.pop(), None);
Ok(())
})
.unwrap()
}
#[test]
fn clear_at_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<u64> = (0..1024).collect();
array.clear_at(0);
assert_eq!(array.len(), 1024);
assert_eq!(array.get(0), None);
let last_idx = array.len() - 1;
assert_eq!(array.get(last_idx), Some(1023));
array.clear_at(last_idx);
assert_eq!(array.get(last_idx), None);
Ok(())
})
.unwrap()
}
#[test]
#[should_panic]
fn clear_at_invalid_index_panics() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
StorageVec::<u32>::new().clear_at(0);
Ok(())
})
.unwrap()
}
#[test]
fn try_get_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let array: StorageVec<u32> = (0..10).collect();
assert_eq!(array.try_get(0), Some(Ok(0)));
assert_eq!(array.try_get(11), None);
Ok(())
})
.unwrap()
}
#[test]
fn try_set_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<u32> = (0..10).collect();
assert_eq!(array.try_set(0, &1), Ok(Some(4)));
assert_eq!(
array.try_set(10, &1),
Err(ink_env::Error::ReturnError(
ink_env::ReturnErrorCode::KeyNotFound
))
);
array.clear_at(0);
assert_eq!(array.try_set(0, &1), Ok(None));
Ok(())
})
.unwrap()
}
#[test]
fn fallible_push_pop_peek_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array: StorageVec<u32> = (0..10).collect();
assert_eq!(array.try_push(&10), Ok(()));
assert_eq!(array.try_pop(), Some(Ok(10)));
assert_eq!(array.try_peek(), Some(Ok(9)));
array.clear();
assert_eq!(array.try_pop(), None);
assert_eq!(array.try_peek(), None);
Ok(())
})
.unwrap()
}
#[test]
fn peek_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let mut array = StorageVec::<u32>::new();
assert_eq!(array.peek(), None);
array.push(&0);
array.push(&9);
assert_eq!(array.peek(), Some(9));
assert_eq!(array.peek(), Some(9));
assert_eq!(array.len(), 2);
array.clear();
assert_eq!(array.peek(), None);
assert_eq!(array.len(), 0);
Ok(())
})
.unwrap()
}
#[test]
fn from_iter_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let array = StorageVec::<u32>::from_iter([u32::MIN, u32::MAX]);
assert_eq!(array.len(), 2);
assert_eq!(array.get(0), Some(u32::MIN));
assert_eq!(array.get(1), Some(u32::MAX));
Ok(())
})
.unwrap()
}
#[test]
#[should_panic(
expected = "assertion failed: cached_len.is_none() || self.len.get() == cached_len"
)]
fn cached_len_works() {
ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
let array = StorageVec::<u32>::from_iter([u32::MIN, u32::MAX]);
assert_eq!(array.len(), 2);
// Force overwrite the length
Lazy::<u32>::new().set(&u32::MAX);
// This should fail the debug assert
let _ = array.len();
Ok(())
})
.unwrap()
}
}