ink_primitives/key.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// Copyright (C) Use Ink (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use xxhash_rust::const_xxh32::xxh32;
/// The value 0 is a valid seed.
const XXH32_SEED: u32 = 0;
/// A key into the smart contract storage.
///
/// # Note
///
/// - The storage of an ink! smart contract can be viewed as a key-value store.
/// - In order to manipulate its storage an ink! smart contract is required to indicate
/// the respective cells using this primitive type.
/// - The `Key` type can be compared to a raw pointer and also allows operations similar
/// to pointer arithmetic.
pub type Key = u32;
/// Contains all rules related to storage key creation.
pub struct KeyComposer;
impl KeyComposer {
/// Concatenate two `Key` into one during compilation.
pub const fn concat(left: Key, right: Key) -> Key {
// If one of the keys is zero, then return another without hashing.
// If both keys are non-zero, return the hash of the XOR difference of both keys.
match (left, right) {
(0, 0) => 0,
(0, _) => right,
(_, 0) => left,
(left, right) => xxh32(&(left ^ right).to_be_bytes(), XXH32_SEED),
}
}
/// Return the storage key from the supplied `str`.
pub const fn from_str(str: &str) -> Key {
Self::from_bytes(str.as_bytes())
}
/// Returns the storage key from the supplied `bytes`.
pub const fn from_bytes(bytes: &[u8]) -> Key {
if bytes.is_empty() {
return 0
}
xxh32(bytes, XXH32_SEED)
}
/// Evaluates the storage key of the field in the structure, variant or union.
///
/// 1. Compute the ASCII byte representation of `struct_name` and call it `S`.
/// 1. If `variant_name` is not empty then computes the ASCII byte representation and
/// call it `V`. 1. Compute the ASCII byte representation of `field_name` and call
/// it `F`. 1. Concatenate (`S` and `F`) or (`S`, `V` and `F`) using `::` as
/// separator and call it `C`. 1. The `XXH32` hash of `C` is the storage key.
///
/// # Note
///
/// - `variant_name` is empty for structures and unions.
/// - if the field is unnamed then `field_name` is `"{}"` where `{}` is a number of
/// the field.
pub fn compute_key(
struct_name: &str,
variant_name: &str,
field_name: &str,
) -> Result<Key, Error> {
if struct_name.is_empty() {
return Err(Error::StructNameIsEmpty)
}
if field_name.is_empty() {
return Err(Error::FieldNameIsEmpty)
}
let separator = &b"::"[..];
let composed_key = if !variant_name.is_empty() {
[
struct_name.as_bytes(),
variant_name.as_bytes(),
field_name.as_bytes(),
]
.join(separator)
} else {
[struct_name.as_bytes(), field_name.as_bytes()].join(separator)
};
Ok(Self::from_bytes(composed_key.as_slice()))
}
}
/// Possible errors during the computation of the storage key.
#[derive(Debug, PartialEq, Eq)]
pub enum Error {
StructNameIsEmpty,
FieldNameIsEmpty,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn concat_works_correct() {
assert_eq!(KeyComposer::concat(0, 13), 13);
assert_eq!(KeyComposer::concat(31, 0), 31);
assert_eq!(KeyComposer::concat(31, 13), 0x9ab19a67);
assert_eq!(KeyComposer::concat(0, 0), 0);
}
#[test]
fn from_str_works_correct() {
assert_eq!(KeyComposer::from_str(""), 0);
assert_eq!(KeyComposer::from_str("123"), 0xb6855437);
assert_eq!(KeyComposer::from_str("Hello world"), 0x9705d437);
}
#[test]
fn from_bytes_works_correct() {
assert_eq!(KeyComposer::from_bytes(b""), 0);
assert_eq!(KeyComposer::from_bytes(b"123"), 0xb6855437);
assert_eq!(KeyComposer::from_bytes(b"Hello world"), 0x9705d437);
}
#[test]
fn compute_key_works_correct() {
assert_eq!(
KeyComposer::compute_key("Contract", "", "balances"),
Ok(0xf820ff02)
);
assert_eq!(
KeyComposer::compute_key("Enum", "Variant", "0"),
Ok(0x14786b51)
);
assert_eq!(
KeyComposer::compute_key("", "Variant", "0"),
Err(Error::StructNameIsEmpty)
);
assert_eq!(
KeyComposer::compute_key("Enum", "Variant", ""),
Err(Error::FieldNameIsEmpty)
);
}
}